1 SPIN-WAVE THEORY FOR THE CLASSICAL-.-..

that 7 in one case involves J while the other has |J].
This is perhaps not surprising in view of the relation
noted by Rushbrooke and Wood? for the classical case,

KT/ T =kTx/ || (10)

for the relationship of the Curie and Néel temperatures.
Returning to Eq. (9) we expand in powers of 7 for
<7 finding

(11)

Experience with the ferromagnetic case suggests that
the error will lie in the 7% term, and moreover, that the
only contributions are of the form a,77, > 0.

In this infinite-spin limit the kinematic effect
vanishes and we assume that the bond states disappear
by analogy with the ferromagnetic situation. We see
from Eq. (11) that the classical ground state has the
full alignment of the Néel state as should be expected,

8 G. S. Rushbrooke and P. J. Wood, Mol. Phys. 6, 409 (1963).

ma=1—c"7r—c"72—0(7%)- - -.
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i.e., the zero-point deviation of the finite-spin case has
been removed. Furthermore, what is left in the temper-
ature dependence of the sublattice magnetization is
quite different from the finite-spin results of Oguchi,®
specifically for noninteracting spin waves one has a
linear effect instead of 7% T% T, ... dependences and
the leading interaction term is quadratic rather than 7°°.

There exists a strong similarity between the sublattice
magnetization of Eq. (11) and the magnetization of the
classical ferromagnet, at least to the order 72 treated
here—for the ferromagnet we find Watson’s integral’
instead of ¢”’. For the CsCl or bec type of antiferro-
magnet (s.c. sublattices and Brillouin zone) preliminary
computations give ¢’’~1.3934-0.002 which is close to
the value of Watson’s integral on the bcc lattice,
namely, 1.39320. Further work on a number of aspects
of this problem are underway.

6 T, Oguchi, Phys. Rev. 117, 117 (1960).
7 G. N. Watson, Quart. J. Math. 10, 266 (1939).
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It is shown that the decoupling procedure used by Mubayi and Lange leads to the onset of antiferro-
magnetic short-range order in ferromagnetic systems. This defect occurs in both two- and three-dimensional
lattices and occurs over a temperature range that includes the supposed transition temperatures. Any
conclusions drawn about the behavior of the systems over this temperature range, including the existence
of a transition, must, therefore, be regarded as questionable.

I. INTRODUCTION

ECENTLY, Mubayi and Lange! presented a
theory for a two-dimensional ferromagnet that
exhibited a phase transition, in accord with the con-
jectures of Stanley and Kaplan,? without the appearance
of any spontaneous magnetization, in accord with the
proof of Mermin and Wagner® that a two-dimensional
isotropic ferromagnet cannot support a finite mag-
netization in zero field. Their theory consists of a
linearized Green’s-function theory in which the second-
order Green’s function is written as a linear combination
of first-order functions. The coefficients in the expansion
are chosen by requiring that the replacement be exact
in certain limiting cases.

* Research supported in part by the U. S. Air Force Office of
Scientific Research, Grant No. AF-AFOSR-68-1535.
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In this paper, we point out that the procedure used
in I, which is equivalent to the use of the Roth* de-
coupling procedure, always leads to the result that at
some temperature in the range (0,7), the longitudinal
correlation function

n=g"1 % (S#Sivs®) ey

changes sign. Here, 2 is the coordination number of the
lattice, and the &’s connect nearest-neighboring sites.
Furthermore, at T'=T,, the symmetry remains broken,
and this persists into the paramagnetic region. Since
negative  corresponds to antiferromagnetic order, the
conclusions of I are open to question.

II. LINEARIZED EQUATIONS OF MOTION

We begin with the Hamiltonian used in I,
H=—w 2 SiF—2 Ji;5: S5, 2
i g

4 L. M. Roth, Phys. Rev. Letters 20, 1431 (1968).
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where wo=gugH and J;;=J;>0, J;;=0, and we define
a first-order Green’s function by

Gii(t—1")= (S (1); S ()))

=—i0(t—){[SHO,S~)1). ()
The equation of motion of G is
[t(a/alf) —wo:]Gij(t— l,) = 2(5’)3,]5 (t— t,)
+H;(—t), 4)

where the second-order Green’s function H;;(t—t') is
given by

H;i(t—t)=—2 ; Ja[{((StH®S#(); Si~1)))

—{(Sr@®S+®; SN ©)

Mubayi and Lange now proceed to write H;; as a linear
combination of G;s. We prefer the more direct pro-
cedure of writing the decoupling in terms of the spectral
densities, g;;(w) and %;;(w), defined by

Gi(t—t)=—1i0(@—1") / dw g:j(w) exp[—iw(—1")] (6)

and —:

Hij(t—l' = —10(l—t/)/- dw hij(w) exp[—w(t—t’)] N
- W

in the form

hij(w) =Zl: Augii(w) @®)

since this form is more clearly related to the Roth
procedure. g and % satisfy certain easily verified sum
rules. Suppose we have a Green’s function ((4; B))
with spectral density pap(w). Then

f do wmpan(@)=([[...[A],...%1,B1), ()

where 3C appears »# times in the nested commutator.
Evaluation of (9) for =0 gives, when (8) is used,
A= (S 2 Ja(2(S#Se)+(SSit)),
1

Aa=—(S*y"Ta2(S#Sr)+(SSit)), =l (11)

(10)

in which we have assumed inversion symmetry for the
lattice, so that the averages (S;°S;*) are real. We
therefore have for H;;

Hi(t—1)=(S*)" ZI Jii(2(S#S¥)+-(SSet))
X[Gi;(t—1")—Gu(t—1)].

Equation (12) is identical to the decoupling used in I,
but it has been derived for arbitrary spin. The form of
the renormalization coefficient appearing in (12) is the
result of the use of the Roth decoupling procedure. The

(12)
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connection to the Roth decoupling can easily be seen
by inserting Eq. (8) into Eq. (9) with p=#, which
reproduces Eq. (5) of Roth’s paper.

The inconvenient correlation function (S;25;?) may
be eliminated from the renormalization coefficient by
direct evaluation of the correlation function (BA4),
using Eq. (8) and

(BA)= / de> i) [exp () —1 T, (13)

in the case of spin 4. Further, restricting ourselves to
nearest-neighbor interactions (for simplicity), we obtain

2+ p=20%/(1—2u), (14)

where 7 is defined by Eq. (1), the transverse correlation
function u is defined by

p=z"3 (SiSipst), (15)
5

(S?)=0, and the identities S=St=3%—S57 and S—57=3S~

have been used.

III. TRANSITION TEMPERATURE

The solution of Eq. (4) using Egs. (12) and (14) is
straightforward for spin-} systems and nearest-
neighbor interactions. Fourier-transforming in space
and time, we obtain

Gk,E)=[20/2aN"PJ[E—wo—e(k) T,  (16)
with
e(k)=[20/(1—2u)1Jz(1—7x), an
Yr=2z"1) ekd, (18)
5
The spectral density obtained from (16) is
g(kw) =20 N[ w—wo—e(k)]. (19)

We therefore obtain the following equations for ¢ and u:

b—o=(Q0/N) T (espplunte@0]-1) 0)

and
w=(20/N) 2 vlexpBlwote(k) -1} (21)
k
Setting wo=0 and allowing ¢ — 0, we obtain
kT o/Jz=[2F(1—2u) ! (22)
and
kT /J2=[F—11[1—2u]" (23)
from Egs. (20) and (21), respectively. Here,
F=N"2 Q—v)™ (24)
k

For two-dimensional systems, & diverges to «, and
one must resort to more careful analysis of the equa-
tions, as was done in I. For three-dimensional systems,
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F is finite and greater than 1. Solving Egs. (22) and
(23) gives, for these systems,

p=(5—1)/(25)>0; kT./Jz=%. (25)

It should be noted that the transition temperature is
identical to that predicted by the molecular-field theory.
The fact that u is positive at T, indicates that  must be
negative since 29+u=0 [by Eq. (14)]. Near T=0, we
find that u=0, n=1. Thus,  changes sign between
T=0 and T=T,. Furthermore, the symmetry of the
system under rotations of the crystal as a whole remains
broken above T, since we do not have 29=+4u.

Mubayi and Lange give the necessary analysis for
the two-dimensional case. They find that above T, the
renormalization coefficient vanishes linearly with the
field H. At T=T,, it vanishes like (H In|H|)Y3,
Finally, below T, it is independent of H and pro-
portional to (T'.—T)'?, and p=1%. Thus, above T, we
again have <0, while just below T., 29+u can be
made arbitrarily small by approaching 7.. We can
conclude, therefore, that even in the two-dimensional
case, there exists a range of temperatures for which
7<0, and that this range includes the transition tem-
perature. Indeed, it can be shown that Eqs. (14) and
(15) of I can be solved directly for #, giving (in our
notation)

n=—ito+ G—o—u)?/(1+2u), (26)
so that, when ¢=0, we obtain n= —3u, and, below T,
we find n=—%. Thus, 7 is less than 0 over the entire

temperature range considered, a stronger conclusion
than the arguments beginning this paragraph reach.

IV. CONCLUSIONS

We have shown that there exists a range of tempera-
tures surrounding the transition temperature over which
the theory of I gives the result that the longitudinal
correlation function 7 is negative. 5 is essentially the
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same thing as the short-range order, and <0 means
that the order is antiferromagnetic, which is unac-
ceptable in a ferromagnet (where >0 at low tem-
peratures). At the same time, the theory fails to
restore the correct symmetry of the H =0 states. Since
the object of the theory was to establish the existence
(or probable existence) of the transition temperature,
and since the theory appears to fail before the proposed
transition temperature is reached, we think that any
conclusions drawn about the behavior of the system
in the region of negative n must be viewed with
suspicion.

The origin of the difficulty is not clearly exposed, but
we can suggest the following. Linearization of the
equations of motion of a spin system is inconsistent
with the continued assumption that the operators with
which we are dealing are spin operators, unless the
Hamiltonian is a Zeeman Hamiltonian. It is consistent
with the assumption that, along with the linearization,
we change the operators into something closely re-
sembling bosons. In using the Roth procedure, we
(and the authors of I) have made full use of the spin
kinematics, assuming, in effect, that while we are not
obtaining the correct equations of motion for the spin
system under consideration, we are, nonetheless, ob-
taining the equations of motion for some spin system.
We are not, for no such spin Hamiltonian exists. The
more common linearization procedures, on the other
hand, use what amounts to a Wick-type theorem on
the spin-raising and -lowering operators in order to
determine the expansion coefficients. Such theorems
hold for bosons (in some degree of approximation), and
this is just the direction in which linearization takes the
spin operators. We therefore suggest that the problems
of the theory of I are due to the attempt to force the
linearized equations for the Green’s functions to obey
(for t=1') the relations obeyed by the exact equations.
The resulting difficulties are reminiscent of the familiar
oscillations often produced by forcing a polynomial of
degree V-1 to pass through XV specified points.



